A Hopf Algebra on Permutations Arising from Super-Shuffle Product

نویسندگان

چکیده

In this paper, we first prove that any atom of a permutation obtained by the super-shuffle product two permutations can only consist some complete atoms original permutations. Then, and cut-box coproduct on are compatible, which makes it bialgebra. As algebra is graded connected, Hopf algebra.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hopf Algebra of Permutations

We analyze the structure of the Malvenuto-Reutenauer Hopf algebra of permutations in detail. We give explicit formulas for its antipode, prove that it is a cofree coalgebra, determine its primitive elements and its coradical filtration and show that it decomposes as a crossed product over the Hopf algebra of quasi-symmetric functions. We also describe the structure constants of the multiplicati...

متن کامل

The Hopf Algebra of Uniform Block Permutations

We introduce the Hopf algebra of uniform block permutations and show that it is self-dual, free, and cofree. These results are closely related to the fact that uniform block permutations form a factorizable inverse monoid. This Hopf algebra contains the Hopf algebra of permutations of Malvenuto and Reutenauer and the Hopf algebra of symmetric functions in non-commuting variables of Gebhard, Ros...

متن کامل

The Hopf Algebra of Uniform Block Permutations. Extended Abstract

Abstract. We introduce the Hopf algebra of uniform block permutations and show that it is self-dual, free, and cofree. These results are closely related to the fact that uniform block permutations form a factorizable inverse monoid. This Hopf algebra contains the Hopf algebra of permutations of Malvenuto and Reutenauer and the Hopf algebra of symmetric functions in non-commuting variables of Ge...

متن کامل

Structure of the Malvenuto-reutenauer Hopf Algebra of Permutations

We analyze the structure of the Malvenuto-Reutenauer Hopf algebraSSym of permutations in detail. We give explicit formulas for its antipode, prove that it is a cofree coalgebra, determine its primitive elements and its coradical filtration, and show that it decomposes as a crossed product over the Hopf algebra of quasi-symmetric functions. In addition, we describe the structure constants of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2021

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym13061010